Categories
Archive Blogroll Development Challenges, South-South Solutions Newsletters

China Pushing Frontiers of Medical Research

By David SouthDevelopment Challenges, South-South Solutions

SOUTH-SOUTH CASE STUDY

Cutting-edge medical research in China is promising to boost human health and development. Futuristic science is being conducted on a large scale and it is hoped this will increase the pace of discovery.

Around the world, rapid progress is being made in understanding the role played by genes and how they affect our overall health and susceptibility to diseases. Other developments are leading to the possibility of creating replacements for organs and other body parts that have been damaged through accidents, disease or genetic faults – without the need for organ donors.

Medical advances straight out of science fiction could be closer than many believe. By using machines and gene therapy, radical new methods will emerge to deal with damage done to human bodies as a result of accidents or disease. These solutions will become, in time, quicker, smaller and cheaper and will be available to more and more countries. They will spread outwards around the global South just as mobile phones and computing electronics have done.

In China, the government is investing heavily in this cutting-edge research and attracting investment and projects from around the world to increase the pace of progress in these areas.

In September 2013, Reuters reported that a 22-year-old man named Xiaolian in Fuzhou, China had a new nose grown on his forehead to replace his original nose that had been damaged in a car accident. Conventional reconstructive surgery was not possible, so this radical new approach was taken.

The advantages of growing a nose on the patient include a reduced chance of rejection by the body when the new organ is attached. Transplants of body parts from other people come with a high risk of rejection and require many drugs to prevent it. Using skin near where the transplant is to take place, on the face, improves the chances of success and the blood vessels in the forehead offer nourishment to grow the new nose.

The procedure works like this: tissue expanders are placed on the patient’s forehead. As it grows, the doctors cut the mass of tissue into the shape of a nose and cartilage from the patient’s ribs is placed inside to give the nose shape. The new proboscis (http://en.wikipedia.org/wiki/Proboscis) grows under the skin until it is the right size and then transplanted onto the patient’s face where their old nose was.

Many believe this is just the beginning and that in the future replacement organs will be also grown in a lab. And this is where the new medical technology of 3D bioprinting comes into play.

3D printing machines (http://www.k8200.eu/), or fabricators, can create 3D objects based on a design sent from a computer. This concept is now also being applied to biological materials with 3D bioprinters.

Hangzhou Dianzi University of Electronic Science and Technology (hdu.edu.cn) in China launched the Regenovo 3D Bio-printer in August 2013. It prints living tissue and looks like a silver metal frame with various nozzles situated above a platform for printing the tissue. Its makers claim it can print a liver in 40 minutes to an hour or an ear in 50 minutes.

A sheet of hydrogel is placed on the platform and then the bioprinter deposits cells into the hydrogel. As the process is repeated over and over again, layer after layer, a 3D biological structure emerges.

Unique Technology (sinounic.com) in Qingdao, Shandong province has also launched a 3D printer called “Re-human”. It is capable of printing at 15 microns and can operate in temperatures of between 0 and 300 degrees Celsius. Scientists there are working on clinical trials of 3D-printed tissue scaffolds and bones.

China is very advanced in the development of 3D manufacturing technology, and is home to the world’s largest 3D printers, developed by Dalian University of Technology (http://www.dlut.edu.cn/en/). Another Chinese company pioneering this technology is Shaanxi Hengtong Intelligent Machines (http://www.china-rpm.com/english/), which sells various laser-using rapid prototyping machines and 3D machines.

Around the world, bioprinting is currently being pioneered for printing heart valves, ears, artificial bones, joints, vascular tubes, and skin for grafts.

The number of scientific papers mentioning bioprinting tripled between 2008 and 2011 according to Popular Science. But why is this happening? Three things are occurring at once: sophisticated 3D printers are now available, there are significant advances in regenerative medicine, and CAD (computer-aided design) (http://en.wikipedia.org/wiki/Computer-aided_design) software continues to become more advanced.

San Diego, California’s Organovo (organovo.com), a company that designs and creates functional human tissues using 3D bioprinting, has big ambitions for the technology.

“Getting to a whole organ-in-a-box that’s plug-and-play and ready to go, I believe that could happen in my lifetime,” its chief technology officer, Sharon Presnell, told Popular Science.

In the field of gene science, China is also investing significant resources to make rapid progress. China is working to make its genetic research industry into one of the country’s pillar industries.

Beijing Genomics Institute (BGI) (http://www.genomics.cn/en/index) is the world’s largest genome-mapping institute, with more than 1,000 biological analysis devices working with top-of-the-line genome-sequencing machines. What makes BGI different is scale: it can handle data in vast quantities and industrialize its research, according to China Daily.

The China National Genebank in Shenzhen (http://www.nationalgenebank.org/en/index.html), associated with BGI and its Cognitive Genetics Project, is one of the largest gene banks in the world. It has collected the DNA (http://www.biologycorner.com/bio1/DNA.html) samples of some of the world’s smartest people to sequence their genomes and work out which alleles (http://www.sciencedaily.com/articles/a/allele.htm) determine human intelligence.

But what will they do with this information? By doing embryo screening, it will be possible to pick the brightest zygote (http://en.wikipedia.org/wiki/Zygote) and ensure an entire generation’s intelligence is increased by five to 15 IQ (intelligence quotient) points. This could have a significant impact on the country’s economic performance, the researchers believe, and help in the country making more rapid economic and development gains. This line of research is also seen globally as being fraught with ethical dilemmas and is controversial.

But the Chinese researchers believe the country’s economic productivity, business success, international competitiveness and the amount of innovation in the economy could all increase with an IQ boost.

The eggs are fertilized in the lab with the father’s sperm and the embryos are tested until they find the smartest one.

Embryo analysis could take place on a large scale in a few years. But it is not just better brains that are possible with this technique: choices can be made about hair and eye colors, and physical attributes such as body shape.

This level of research is benefiting from vast investments in higher education in China.

And it isn’t just human beings receiving the vast investment in gene research.

To help agriculture and agribusiness, the National Center for Gene Research (NCGR) (ncgr.ac.cn) is mapping and sequencing the rice genome, and genomes of other organisms. Since 2007, it has been using the latest generation sequencing technology to map the rice genome to identify common genetic factors. It has 50 million base pairs of rice genomic DNA sequences in its public database. It is hoped this will lead to more robust rice varieties that can withstand disease and climate fluctuations and help meet the food needs of a growing global population.

Published: November 2013

Resources

1) Wake Forest Institute for Regenerative Medicine: Wake Forest Innovations was created in 2012 as a new operating division of Wake Forest Baptist Medical Center. As the Medical Center’s technology commercialization arm, Wake Forest Innovations supports scholarship, investing in the innovative potential of academic and clinical communities and helping translate ideas and discoveries into valuable commercial products and services. Website: http://www.wakehealth.edu/WFIRM/

2) DEKA Research & Development: DEKA Research and Development Corporation is an established company focused on the development of radical new healthcare technologies that span a diverse set of applications. Website: http://www.dekaresearch.com/index.shtml

3) Organovo: Organovo design and create functional human tissues using proprietary three-dimensional bioprinting technology. The goal is to build living human tissues that are proven to function like native tissues. Website: http://www.organovo.com/

Project Cyborg: A web-based platform geared toward nanoscale molecular modeling and simulations for cellular biology. Website: http://www.autodeskresearch.com/projects/cyborg
Make your own bioprinter: DIYBioPrinter: Step by step construction of a bioprinter from an old HP 5150 inkjet printer. Website: http://www.instructables.com/id/DIY-BioPrinter/

6) Autodesk is working on CAD software for bioprinting. Website: autodesk.co.uk

7) BGI Cognitive Genetics Project: BGI Cognitive Genomics is an interdisciplinary research group at BGI, one of the largest genomics institutes in the world. The focus is human cognition, with emphasis on the use of tools made available by rapid advances in DNA sequencing technology. Website: https://www.cog-genomics.org/

8) Institute of Genetics and Developmental Biology Chinese Academy of Sciences: The mission of the institute is to address fundamental questions in genetics and developmental biology and to develop new technologies for the uses in health care and agriculture sciences as well as to meet the nation’s strategic needs in science and technology. Scientists in the institute use both plant and animal models to address fundamental questions in life sciences, such as genetic control of growth and development, gene expression, signal transduction, structural and functional genomics, biotech and molecular breeding, bioinformatics and systems biology. As China owns the biggest agricultural market in the world, researchers in the Institute have also made significant efforts on water saving agriculture and agronomic studies, focusing on the improvement of crop productivity and quality as well as bio-safety. Website: http://english.genetics.cas.cn/au/

https://davidsouthconsulting.org/2021/06/04/an-innovators-big-chicken-agenda-for-africa/

https://davidsouthconsulting.org/2022/07/25/award-winning-research-on-history-of-eugenics-reaps-honours/

https://davidsouthconsulting.org/2021/06/02/case-study-5-gosh-ich-child-health-portal-2001-2003/

https://davidsouthconsulting.org/2021/03/08/the-dawn-of-the-genetics-revolution-2001-2003/

https://davidsouthconsulting.org/2017/10/18/hannah-institute-for-the-history-of-medicine-1992-1994/

https://davidsouthconsulting.org/2021/10/20/research-reviews-2001-2002/

Development Challenges, South-South Solutions was launched as an e-newsletter in 2006 by UNDP’s South-South Cooperation Unit (now the United Nations Office for South-South Cooperation) based in New York, USA. It led on profiling the rise of the global South as an economic powerhouse and was one of the first regular publications to champion the global South’s innovators, entrepreneurs, and pioneers. It tracked the key trends that are now so profoundly reshaping how development is seen and done. This includes the rapid take-up of mobile phones and information technology in the global South (as profiled in the first issue of magazine Southern Innovator), the move to becoming a majority urban world, a growing global innovator culture, and the plethora of solutions being developed in the global South to tackle its problems and improve living conditions and boost human development. The success of the e-newsletter led to the launch of the magazine Southern Innovator.  

Follow @SouthSouth1

Google Books: https://books.google.co.uk/books?id=2fdcAwAAQBAJ&dq=development+challenges+november+2013&source=gbs_navlinks_s

Slideshare: http://www.slideshare.net/DavidSouth1/development-challenges-november-2013-issue

Southern Innovator Issue 1: https://books.google.co.uk/books?id=Q1O54YSE2BgC&dq=southern+innovator&source=gbs_navlinks_s

Southern Innovator Issue 2: https://books.google.co.uk/books?id=Ty0N969dcssC&dq=southern+innovator&source=gbs_navlinks_s

Southern Innovator Issue 3: https://books.google.co.uk/books?id=AQNt4YmhZagC&dq=southern+innovator&source=gbs_navlinks_s

Southern Innovator Issue 4: https://books.google.co.uk/books?id=9T_n2tA7l4EC&dq=southern+innovator&source=gbs_navlinks_s

Southern Innovator Issue 5: https://books.google.co.uk/books?id=6ILdAgAAQBAJ&dq=southern+innovator&source=gbs_navlinks_s

Creative Commons License
This work is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

ORCID iD: https://orcid.org/0000-0001-5311-1052.

© David South Consulting 2023

Categories
Archive Blogroll Hannah Institute for the History of Medicine

Hannah Institute For The History Of Medicine | 1992 – 1994

DS Consulting logo copy

Publisher: Hannah Institute for the History of Medicine

Location: Toronto, Canada

Editor and Writer: David South

I worked as Editor and Writer for the newsletter of the Hannah Institute for the History of Medicine (under the direction of the Editor-in-Chief and Hannah Executive Director Dr. J.T. H. Connor) in the early 1990s. Located close to the University of Toronto and within a neighbourhood claiming a long association with medical and scientific discovery (Sir Frederick Banting, co-developer of insulin for the treatment of diabetes, lived at 46 Bedford Road,), the goal was to better connect Canada’s medical history community of scholars and raise the profile of the funding resources available to further the study of medical history in Canada.

The Toronto Legacy Project and Heritage Toronto plaque marking the location of Sir Frederick Banting’s former home.

I also revamped the application process for awards, scholarships and grants to make them user-friendly and compatible with word processing software packages of the time.

The Hannah Institute was the adminstrator for the grants and awards funded by AMS (Associated Medical Services). It has had a profound impact on the medical history field in Canada, as the AMS website states:   

“As a result of the growth of the discipline and the burgeoning of scholarship, as well as financial support from other funding bodies, in 2006, the AMS Board of Directors decided not to provide new competitive grants and further, decided to bring AMS- administered competitive grants to closure by 2011.

In the 1970’s when the Hannah Chairs and the Hannah Institute were established, the discipline of the history of medicine was an “orphan’ within the Canadian scholarly community. Three decades later with the support of AMS, history of medicine and healthcare continued to thrive in universities and colleges across Canada.”

It funded groundbreaking medical history research and scholarship, including books such as Eugenics, Human Genetics and Human Failings: The Eugenics Society, its sources and its critics in Britain By Pauline Mazumdar, Copyright Year 1992.

The publishing impact of the Hannah Institute’s support according to WorldCat.

At the time I also worked as an investigative journalist and medical reporter. Some health and medical stories I wrote at the time are below:

Taking Medicine to the People: Four Innovators in Community Health

Take Two Big Doses of Humanity and Call Me in the Morning

The archive of newsletters is held at the Wellcome Collection Library in London, UK and at the University of Toronto.
Hannah 14-15_mini
Hannah 17_mini
Hannah 18_mini
“Professor puts chronic fatigue into historical perspective” announced the launch of a new book by the University of Toronto’s Hannah Professor Edward Shorter.
Hannah 19_mini
Hannah 20_mini
Hannah newsletter masthead_mini
Abstracts in Anthropology, Volume 43, Issues 3-4: “… in recent years it has become a pursuit for a growing number of researchers. … Behind much of this growth has been the Hannah Institute for the History of Medicine which has encouraged writing …”.

More on the Hannah Institute’s history here:

John B. Neilson and G. R. Paterson, Associated Medical Services, Incorporated: a history, Toronto, Associated Medical Services and the Hannah Institute for the History of Medicine, 1987, 8vo, pp. 445, illus., $15.00.

The Hannah Institute: promoting Canadian history of medicine (Can Med Assoc J. 1983 Jun 1; 128(11): 1325–1328.).

The Hannah Institute For The History Of Medicine, Vol. 1, No. 1

By BARR, Murray L.; HART, Gerald D.; SALTER, Robert B

https://davidsouthconsulting.org/2022/06/24/can-we-talk-hannah-promotes-communication-between-medical-schools/

https://davidsouthconsulting.org/2021/06/02/case-study-5-gosh-ich-child-health-portal-2001-2003/

https://davidsouthconsulting.org/2021/03/08/the-dawn-of-the-genetics-revolution-2001-2003/

https://davidsouthconsulting.org/2022/09/19/medical-museum-makes-plans-for-future/

https://davidsouthconsulting.org/2022/06/24/professor-puts-chronic-fatigue-into-historical-perspective/

https://davidsouthconsulting.org/2021/10/20/research-reviews-2001-2002/

https://davidsouthconsulting.org/2020/04/20/take-two-big-doses-of-humanity-and-call-me-in-the-morning/

https://davidsouthconsulting.org/2020/04/17/taking-medicine-to-the-people-four-innovators-in-community-health/

DSC web address in green_mini (1)

ORCID iD: https://orcid.org/0000-0001-5311-1052.

© David South Consulting 2023

Categories
Archive Blogroll

Interviews for the GOSH Child Health Portal 2001-2003 | 14 April 2016

Roundabout, November 2001 Issue No. 18

Joint Website Launched

A two-year project to turn our joint institution’s website (www.gosh.nhs.uk) into a respected child health portal got underway with the launch of the first phase of development in September. The second phase of content development will get the site ship shape for a UK-wide publicity campaign as the hospital’s 150th birthday celebrations begin in January.

The site’s web editor, David South, has been working on the project since arriving here in June, having worked on award-winning websites for the United Nations.

“The first phase saw collaboration from staff across both institutions,” he says. “An impressive amount was done, and we have now laid the foundations for future improvements to the content on the site. I really want to offer more for children. Over three million children in the UK now surf the internet.”

The opportunity for both institutions is enormous. As the internet has evolved, it has become increasingly clear that the future of its development lies in the public sphere. US government sites now outstrip commercial operations, selling far more books than the largest online bookseller, amazon.com. Here in the UK, the http://www.ukonline.gov.uk site is working to offer one-stop access to all government services, including health care.

Unlike commercial operations, the hospital and the Institute are an unbiased resource for the public to turn to. Currently, the joint site has more than 180 factsheets for families covering tests and procedures, illnesses and diseases and operations. It also has the complete archive of Dr. Jane Collins’ Times column, with its jargon-free look at child health issues.

“This being London, we have the unique advantage of being at the centre of so many developments, and having the opportunity to communicate this through our website,” says David South.

Across the NHS the Modernisation Plan involves the largest data collection exercise in its history. More and more resources will be offered online, and the content produced by individual trusts like ours will be linked with national sites like NHS Direct.

New GOSH/ICH website

With over three million children in the UK now using the internet, and a total of 33 million UK citizens accessing it through work, school or the home, no organisation can afford not to make the most of this valuable communications tool. Estimates vary, but some put the number of health-related websites at more than 100,000. Trust is an even more important issue, as users search for accurate information. It is in this context that the new hospital and ICH website, http://www.gosh.nhs.uk, launched in September. Web editor David South puts us in the picture.

The new site reflects the hard work and collaboration of staff across both institutions, and it is hoped it will quickly make its mark as a trusted resource on complex child health issues. The site also becomes one of the most visible signs of our on-going modernisation programme, and can uniquely tie together the breadth of our work in a way that no other medium can. The site development project spans two years and will fit in with the wider move across the NHS to offer a wide range of services online.

The next phase of the site’s development is aimed at getting the site ready for a larger publicity campaign slated to coincide with the hospital’s 150th birthday celebrations with start in January. In preparation for this public launch, a number of improvements will be made to the site’s content, interactivity, platform and design. To put it simply, the site should become a critical first stop for anybody seeking our services, or wanting to learn more about the latest research and care developments in the field of complex child issues.

The joint site will also be available via Gosweb for staff in the hospital who don’t already have internet access.

As the project evolved, regular updates were communicated to colleagues and the public through the media.
The BBC story from 2002’s launch of the GOSH Child Health Portal’s children’s content (www.gosh.nhs.uk).
Creative Commons License

This work is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

ORCID iD: https://orcid.org/0000-0001-5311-1052.

© David South Consulting 2022